wreathed subgroup - significado y definición. Qué es wreathed subgroup
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es wreathed subgroup - definición

OPERATION ON TWO GROUPS IN GROUP THEORY
Wreathed product; ≀

Normal subgroup         
SUBGROUP INVARIANT UNDER CONJUGATION
Normal subgroups; Invariant subgroup; ◅; Normal group; ⊲; ⊳; ⊴; ⊵; ⋪; ⋫; ⋬; ⋭; Normal Subgroup; Self-conjugate subgroup
In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group G is normal in G if and only if gng^{-1} \in N for all g \in G and n \in N.
Commutator subgroup         
SMALLEST NORMAL SUBGROUP BY WHICH THE QUOTIENT IS COMMUTATIVE
Derived subgroup; Abelianisation; Abelianization; Derived group; Derived series; Transfinite derived series; The Commutator Subgroup Of G; The Derived Group Of G; Commutator group
In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group.
Subgroup         
SUBSET OF A MATHEMATICAL GROUP THAT FORMS A GROUP ITSELF
SubGroup; Subgroups; Proper subgroup; Overgroup; Subgroup test; Subgroup Test; Sub-group; Subgroup (mathematics); Subgroups of S4
·noun A subdivision of a group, as of animals.

Wikipedia

Wreath product

In group theory, the wreath product is a special combination of two groups based on the semidirect product. It is formed by the action of one group on many copies of another group, somewhat analogous to exponentiation. Wreath products are used in the classification of permutation groups and also provide a way of constructing interesting examples of groups.

Given two groups A {\displaystyle A} and H {\displaystyle H} (sometimes known as the bottom and top), there exist two variations of the wreath product: the unrestricted wreath product A  Wr  H {\displaystyle A{\text{ Wr }}H} and the restricted wreath product A  wr  H {\displaystyle A{\text{ wr }}H} . The general form, denoted by A  Wr Ω H {\displaystyle A{\text{ Wr}}_{\Omega }H} or A  wr Ω H {\displaystyle A{\text{ wr}}_{\Omega }H} respectively, requires that H {\displaystyle H} acts on some set Ω {\displaystyle \Omega } ; when unspecified, usually Ω = H {\displaystyle \Omega =H} (a regular wreath product), though a different Ω {\displaystyle \Omega } is sometimes implied. The two variations coincide when A {\displaystyle A} , H {\displaystyle H} , and Ω {\displaystyle \Omega } are all finite. Either variation is also denoted as A H {\displaystyle A\wr H} (with \wr for the LaTeX symbol) or A ≀ H (Unicode U+2240).

The notion generalizes to semigroups and is a central construction in the Krohn–Rhodes structure theory of finite semigroups.